Μάθημα: Εργαστήριο Ψηφιακών Ηλεκτρονικών Συστημάτων Αντικείμενο: Ασύγχρονη Σειριακή Επικοινωνία του PIC16F877 (PIC18F452) με προσωπικό Η/Υ

Αντιστοιχεί στην ΑΣΚΗΣΗ 5η: Ασύγχρονη Σειριακή Επικοινωνία με έναν προσωπικό Η/Υ

<u>Υλικά που απαιτούνται:</u>

- Η εκπαιδευτική πινακίδα SE1001
- Ένας μ/c PIC16F877 ή PIC18F452
- Τροφοδοτικό 9-12 Volts
- Εγκατεστημένη γλώσσα προγραμματισμού mikroC για να γράψουμε τον κώδικα
- Προγραμματίστρια MICROCHIP PicStart Plus με εγκατεστημένο το περιβάλλον MPLAB (συνήθως με σειριακό καλώδιο με ακροδέκτη DB9) ή οποιαδήποτε άλλη USB προγραμματίστρια για μ/c PIC με εγκατεστημένο το αντίστοιχο περιβάλλον προγραμματισμού που να είναι συμβατό με το λειτουργικό σύστημα του H/Y που χρησιμοποιούμε. Στην άσκηση αυτή θα χρησιμοποιήσουμε την USB PIC Programmer με στοιχεία K149-BC της DIY Electronics που φαίνεται στην φωτογραφία και εγκαθιστούμε τον αντίστοιχο driver για το λειτουργικό σύστημα. Για τη μεταφορά του κώδικα hex εγκαθιστούμε το λογισμικό MicroPro που τρέχει σε λειτουργικό σύστημα έως την έκδοση Windows 7 των 32 bits.
- Στην εκπαιδευτική πινακίδα SE1001 ο μικροελεγκτής PIC17F877 (PIC18F452) συνδέεται σε συνδετήρα DB9 ώστε να είναι δυνατή η ασύγχρονη σειριακή επικοινωνία του (USART) με προσωπικό H/Y. Αυτό γίνεται μέσω των ακροδεκτών:
 - RC7/RX : με τον οποίο λαμβάνει ο PIC ASCII χαρακτήρες από τον προσωπικό Η/Υ
 - RC6/TX : με τον οποίο στέλνει ο PIC ASCII χαρακτήρες στον προσωπικό Η/Υ.
- Στην άσκηση αυτή θα χρησιμοποιήσουμε το παράθυρο USART που είναι ενσωματωμένο στο περιβάλλον της γλώσσας προγραμματισμού mikroC (ή εναλλακτικά την εφαρμογή HyperTerminal των Windows XP ή μπορούμε να κατεβάσουμε αντίστοιχη εφαρμογή HyperTerminal για Windows 7) και το αντικείμενο της άσκησης θα είναι το παρακάτω:
- Όπως φαίνεται στην παρακάτω φωτογραφία, στο σχήμα που υπάρχει στο εργαστηριακό βιβλίο αλλά και στο συνοδευτικό εγχειρίδιο της πινακίδας SE1001 ανάμεσα στους ακροδέκτες του PIC και στο συνδετήρα DB9 παρεμβάλλεται το IC MAX232 το οποίο μετατρέπει τις τάσεις του '0' (0 Volts) και '1' (+5 Volts) με τις οποίες λειτουργεί ο PIC σε αντίστοιχες τάσεις της σειριακής επικοινωνίας '0' (+10 Volts) και '1' (-12 Volts). Στην ίδια φωτογραφία φαίνεται ότι ο συνδετήρας DB9 της πινακίδας SE1001 συνδέεται στις θύρες USB ενός σύγχρονου προσωπικό H/Y (που δεν διαθέτει συνδετήρα σειριακής επικοινωνίας DB9) με μετατροπέα USB to serial για τον οποίο φροντίσαμε κατά την αγορά του από τα καταστήματα H/Y και περιφερειακών να συνοδεύεται από CD οδηγών που να είναι συμβατοί με λειτουργικό σύστημα WINDOWS 7 (32 και 64 bits). Κατά την πρώτη σύνδεση του μετατροπέα USB to serial επιλέξαμε εγκατάσταση οδηγών από τον H/Y μου (CD) και όχι ενημέρωση μέσω διαδικτύου. Όπως έχει περιγραφεί και σε προηγούμενα φύλλα έργου θα πρέπει μέσω της Διαχείρισης Συσκευών/Θύρες Com & LPT να

<u>βρούμε τον αριθμό της ομάδας καταχωρητών COMn στους οποίους τα Windows</u> έχουν αντιστοιχίσει το μετατροπέα USB to Serial

Αντικείμενο της άσκησης:

Όταν ο προσωπικός Η/Υ στέλνει στον ΡΙC το χαρακτήρα 'm' ο ΡΙC θα απαντά με τη γραμματοσειρά : 'HELLO'

- Όταν ο προσωπικός Η/Υ στέλνει στον ΡΙC το χαρακτήρα 'a' ο ΡΙC θα απαντά με τη γραμματοσειρά: 'WORLD'
- Όταν ο προσωπικός Η/Υ στέλνει στον PIC το χαρακτήρα 'c' τότε ο PIC θα ενεργοποιεί την μετατροπή αναλογικού σε ψηφιακό και θα αποστέλλει την τιμή των ψηφιακών επιπέδων (0-255) στον Η/Υ.

		1		1	
Απαιτου	יספעפוו	ννωσεις	νια τη	νασκη	σn
1010100	μενες	readers	y cor cr		5

Ο PIC16F877(PIC18F452) διαθέτει το περιφερειακό USART για να στέλνει και να λαμβάνει δεδομένα με συγκεκριμένο ρυθμό (baud). Στη συγκεκριμένη εφαρμογή δεν θα χρησιμοποιήσουμε τη μέθοδο διακοπών και επομένως οι καταχωρητές που σχετίζονται με τη λειτουργία του περιφερειακού USART είναι οι παρακάτω:

TRISC: Επειδή ο ακροδέκτης 26 θα χρησιμοποιηθεί ως είσοδος για την σειριακή επικοινωνία θα πρέπει το αντίστοιχο bit του καταχωρητή διεύθυνσης της θύρας **TRISC** να τεθεί σε κατάσταση 1. Έτσι για την περίπτωση των ακροδεκτών RX και TX, ο καταχωρητής **TRISC** θα πρέπει να προγραμματιστεί με τα περιεχόμενα του παρακάτω πίνακα.

						0		
b7-RX IN	b6-TX OUT	b5	b4	b3	b2	b1	b0	τιμή
1	0	0	0	0	0	0	0	0x80

TRISC :	PortC	Data	Direction	Register
---------	-------	------	-----------	----------

TXSTA: Οι ρυθμίσεις για τη διαδικασία της σειριακής εκπομπής ορίζονται μέσω του ειδικού καταχωρητή ελέγχου **TXSTA**. Τα περιεχόμενα του καταχωρητή αυτού φαίνονται στον παρακάτω πίνακα (για ασύγχρονη επικοινωνία: CSRC=0 και SYNC=0, κωδικοποίηση με 8 δυαδικά ψηφία (TX9=0), ενεργοποίηση της εκπομπής (TXEN=1), επιλογή υψηλής ταχύτητας 9600 bps (BRGH=1), χωρίς bit ισοτιμίας (TX9D=0).

b7	b6	b5	b4	b3	b2	b1	B0	τιμή
CSRC	TX9	TXEN	SYNC	-	BRGH	TRMT	TX9D	
0	0	1	0	0	1	0	0	0x24

TXSTA : Transmit Status and Control Register

RCSTA : Οι ρυθμίσεις της διαδικασίας της σειριακής λήψης γίνονται μέσω του ειδικού καταχωρητή ελέγχου **RCSTA.** Τα περιεχόμενα του, φαίνονται στον παρακάτω πίνακα για : ενεργοποίηση σειριακής θύρας (SPEN=1), ασύγχρονη επικοινωνία (SREN=0), ενεργοποίηση διαδικασίας συνεχούς λήψης (CREN=1), χωρίς bit ισοτιμίας (ADDEN=0).

		ICJIA - I	leceive Jla	tus anu coi	Iti of Kegis	lei		
b7	b6	b5	b4	b3	b2	b1	b0	τιμή
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
1	0	0	1	0	0	0	0	0x90

RCSTA : Receive Status and Control Register

SPBRG: Η ταχύτητα της σειριακής επικοινωνίας καθορίζεται με τη βοήθεια του καταχωρητή SPBRG (Baud Rate Generator). Όπως είδαμε παραπάνω, το bit **BRGH** του καταχωρητή **TXSTA<2>** καθορίζει δύο περιοχές ταχυτήτων επικοινωνίας σύμφωνα με τον πίνακα:

SYNC	BRGH=0 (Low Speed)	BRGH=1 (High Speed)
0	(Asynchronous) Baud Rate =F _{osc} /(64(X+1))	Baud Rate =F _{osc} /(16(X+1))
1	(Synchronous) Baud Rate =F _{osc} /(4(X+1))	N/A

με **F**osc συμβολίζεται η συχνότητα του εξωτερικού κρυστάλλου στο κύκλωμα χρονισμού του μικροελεγκτή και

με **Χ** συμβολίζεται η δεκαδική τιμή του καταχωρητή SPBRG για την ταχύτητα σειριακής επικοινωνίας που επιθυμούμε.

Επειδή έχουμε επιλέξει ασύγχρονη σειριακή επικοινωνία με υψηλές ταχύτητες και οι δοκιμές γίνονται στην εκπαιδευτική πινακίδα SE1001 με κρύσταλλο **4 MHz** και :

BRGH =1 (TXSTA<2>)

Fosc = 4 MHz

Baud Rate = 9600 bps

αντικαθιστώντας στον τύπο 9600=4MHz/[16*(X+1)], τις παραπάνω τιμές, υπολογίζουμε ότι η ποσότητα **X=25** (δεκαδική τιμή) or **X=0x19** (δεκαεξαδική τιμή). Άρα τα περιεχόμενα του καταχωρητή **SPBRG** όπως στον παρακάτω πίνακα:

SPBRG : Baud Rate Generator

b7	b6	b5	b4	b3	b2	B1	b0	τιμή
0	0	0	1	1	0	0	1	0x19 ή 25 ₁₀

RCREG και **PIR1** : Η λήψη του χαρακτήρα στο πρόγραμμα γίνεται με την ανάγνωση του καταχωρητή **RCREG**. Δηλαδή διαβάζοντας τον καταχωρητή **RCREG** βλέπουμε ποιος χαρακτήρας ήρθε στον PIC από τον προσωπικό H/Y. Η ενημέρωση ότι ολοκληρώθηκε η διαδικασία της φόρτωσης του καταχωρητή RCREG υλοποιείται μέσω της σημαίας-bit **RCIF** του καταχωρητή **PIR1** (PIR1
bit5>).

TXREG: στον καταχωρητή αυτό φορτώνουμε το χαρακτήρα που θέλουμε να στείλουμε από τον PIC στον προσωπικό Η/Υ. Όταν ολοκληρωθεί η μεταφορά του χαρακτήρα από τον TXREG στον καταχωρητή TSR, εγείρεται (τίθεται σε 1) η σημαία **TXIF** του καταχωρητή PIR1 (PIR1<bit4>).

b7	b6	b5	b4	b3	b2	b1	B0
PSPI F	ADIF	RCIF	TXIF	SSPI F	CCP1IF	TMR2IF	TMR1IF
	✓	✓	✓				

PIR1 : Peripheral Interrupts Flag Register (0x0C, BANK 0)

Για την περίπτωση της εφαρμογής μας, τα bits που μας ενδιαφέρουν είναι τα: ADIF: σημαία ένδειξης κατάστασης του αναλογικο-ψηφιακού μετατροπέα

1 = ολοκλήρωση της Α/D μετατροπής

0 = μη–ολοκλήρωση της Α/D μετατροπής

RCIF: σημαία ένδειξης ολοκλήρωσης διαδικασίας λήψης. Τα δεδομένα έχουν ολισθήσει μέσω του RSR και έχουν φορτωθεί παράλληλα στον RCREG και επομένως είναι έτοιμα να διαβαστούν από το πρόγραμμα.

<u>1 = ολοκλήρωση λήψης χαρακτήρα μέσω USART στον RCREG</u>

0 = δεν έχει έρθει ή δεν ολοκληρώθηκε ακόμα η λήψη χαρακτήρα και επομένως δεν υπάρχουν δεδομένα στο RCREG

TXIF: σημαία ένδειξης κατάστασης του καταχωρητή TXREG. Μόνο όταν είναι άδειος ο καταχωρητής TXREG μπορούμε να 'του φορτώσουμε' τα δεδομένα που θέλουμε να αποστείλουμε μέσω του USART. Στην συνέχεια τα δεδομένα αυτά φορτώνονται παράλληλα στον καταχωρητή TSR και από εκεί ολισθαίνουν σειριακά μέσω του ακροδέκτη RC6/TX (PORTC<6>) κατά τη διαδικασία της σειριακής εκπομπής.

<u>1 = ο TXREG είναι άδειος</u>

<u>0 = ο TXREG είναι ακόμα γεμάτος με προηγούμενη τιμή</u>

Τα βήματα της άσκησης είναι τα παρακάτω:

- Ακολουθούμε τις οδηγίες Άσκησης 1 και δημιουργούμε φάκελο με όνομα Askisi5 μέσα στον οποίο θα αποθηκευτούν όλα τα αρχεία που δημιουργούνται από το περιβάλλον της MikroC μεταξύ των οποίων το αρχείο project (.mcppi), αρχείο κώδικα C (.c) και το αρχείο hex. Το όνομα των αρχείων μπορεί να είναι το Askisi4.
- 2) Στο παράθυρο κώδικα γράφουμε τις παρακάτω εντολές. Στον κώδικα αυτό συμπεριλαμβάνεται και ο προγραμματισμός του περιφερειακού ADC σύμφωνα με τις οδηγίες της Ασκησης 4. Συμπληρώνουμε σύντομα σχόλια για τη λειτουργία των εντολών όπου υπάρχουν κενές τελείες.

// δηλώσεις μεταβλητών

unsigned short record;

unsigned int k;

void main() {

//αρχικοποίηση του περιφερειακού USART

TRISC=0x80; //
TXSTA=0x24; //
RCSTA=0x90; //
SPBRG=0x19; // baud rate=9600 4MHz/[16x(X+1)] x=15 or 0x19
// αρχικοποίηση του περιφερειακού ADC
// configure pins
TRISA= 0xFF; // PORTA ως input
TRISB=0x00; // PORTB ως output
// STEP1
ADCON1=0x00; // Configure analog inputs and Vref+=Vdd Vref-=Vss // left justified
ADCON0=0x99; // επιλογή συχνότητας δειγματοληψίας 32*Tosc,
// από το ακροδέκτη ΑΝ3, και ενεργοποίηση Α/D
// STEP 2
PIR1=0x00; // clear ADIF flag
PIE1=0x40; // set ADIE , ενεργοποίηση A/D interrupt
//=====================================
wniie(1){
IT(PIK1.F5=1)
record=RCREG;
$if(record=='m')$ $(/ u \in U \cap V)$
{ TXREG=0x48; // 'H'
delay_ms(500);
TXREG=0x45; // 'E'
delay_ms(500);
TXREG=0x4C; // 'L'
delay_ms(500);
TXREG=0x4C; // 'L'
delay_ms(500);
TXREG=0x4F; // '0'

} //
if(record=='a') // 'WORLD'
{
delay_ms(500);
TXREG='W'; //
delay_ms(500);
TXREG='O'; //
delay_ms(500);
TXREG='R'; //
delay_ms(500);
TXREG='L'; //
delay_ms(500);
TXREG='D'; //
delay_ms(500);
} // τέλος δεύτερου εσωτερικού if
if(record=='c') // ADC conversion
{
// STEP 3
delay_ms(100);
// STEP 4
ADCON0=0b10011101; // set G0/DONE για να αρχίσει η Α/D μετατροπή
// STEP 5
// wait for the GO/DONE bit to be cleared
do {
} while (ADCON0.F2=1);
// STEP 6_a : read the A/D result from ADRESH and ADRESL and sent to PORTS
PORTB=ADRESH; // only the 8 most significant bits
TXREG=ADRESH; // στείλε στον Η/Υ μόνο το High Byte(most significant part)
delay_ms(500);
// STEP6_b: clear ADIF bit
PIR1.ADIF=0;

// STEP7 :delay

delay_ms(100);

- } // τέλος δεύτερου εσωτερικού if
- } // end of initial if
- // end of loop }
- // end of main }
- Κάνουμε συμβολομετάφραση (compilation) ώστε να διορθωθούν τα συντακτικά λάθη και να παραχθεί το αρχείο hex (οδηγίες στην Άσκηση 1)
- Στη συνέχεια συνδέουμε σε μία θύρα USB την USB PIC Programmer με στοιχεία 4) K149-BC της DIY Electronics. Περιμένουμε να ανιχνευθεί και να εγκατασταθεί ο driver και εντοπίζουμε σε ποια θύρα COM φαίνεται από το λειτουργικό σύστημα του Η/Υ μας (δεξί κλικ **Η/Υ μου / Διαχείριση Συσκευών / θύρες COM**).
- 5) εφαρμογή MicroPro που συνοδεύει την Τρέχουμε την προγραμματίστρια φροντίζοντας η έκδοσή της να είναι συμβατή με το λειτουργικό σύστημα. Εμείς βρήκαμε έκδοση συμβατή έως τα MicroPro WINDOWS7 32 bits.
 - 6) Από τη διαδρομή File/Serial Port δηλώνουμε τον αριθμό της Com Port που ανιχνεύτηκε η προγραμματίστρια.

7) Τοποθετούμε ένα ολοκληρωμένο PIC16F877 στην προγραμματίστρια και επιλέγουμε τον 16F877 στο πεδίο Chip Selector ενώ με το κουμπί Load φορτώνουμε το αρχείο Askisi4.hex. Με το κουμπί Fuses ρυθμίζουμε:

7

FUSE Edit					×	
⊕ wdt	Disabled	-	PWRTE	Disabled	•	
BODEN	Disabled	•	LVP	Disabled	-	
CPD	Disabled	-	WRT Enable	Enabled	-	
DEBUG	i Disabled	-	Oscillator	HS	-	
Code Protec	t Disabled	•				
		🗸 ОК	🗙 Cancel 🛛 💥	Default 🥂 📍 🛉	<u>t</u> elp ⇒	

8)Στο παράθυρο ROM DATA βλέπουμε το αρχείο askisi5.hex. Με το κουμπί Blank επιλέγουμε Erase Chip για να διαγράψουμε τα προηγούμενα περιεχόμενα του chip και στη συνέχεια πατάμε το κουμπί Program για να μεταφερθεί ο κώδικας hex από τον H/Y στο chip.

ile	Progra	mmer	Optio	ns H	elp							
€ [ROM 1	DATA									
	0000:	2841	SFFF	SFFF	1283	1303	0821	008A	0820	A!.		
	0008:	0082	0008	3007	1283	1303	OOFD	OBFD	280E			1 🛯 🧱 🖕 🔛
	0010:	0008	1283	1303	019F	30C0	049F	1683	171F			
	0018:	179F	1283	0822	OOFO	ODFO	1070	ODFO	1070	"p.p		
	0020:	ODFO	1070	0870	049F	141F	200A	151F	1D1F	.pp		
	0028:	282B	0000	2827	101F	081E	00F1	01F0	1683	+.'		
	0030:	081E	04F0	3000	04F1	0008	2003	118A	120A			
	0038:	0080	0A84	OAAO	1903	0AA1	03F0	1D03	2835			
	0040:	0008	1683	1303	019F	3099	1283	009F	1683			
	0048:	0186	1283	0186	3003	00A2	2011	0870	1283	p.		
	0050:	0086	284B	2852	3FFF	3FFF	3.	de la cli	all an early	.KR		
	0058:	SFFF	3FFF	3FFF	3FFF	3FFF	3: 000	ible cli	ck to edit			
	0060:	3FFF	3FFF	3FFF	3FFF	3FFF	3FFF	SFFF	SFFF			
	0068:	SFFF	SFFF	SFFF	SFFF	SFFF	SFFF	SFFF	SFFF			
	0070:	SFFF	SFFF	SFFF	SFFF	SFFF	SFFF	SFFF	SFFF		-	III and the second III
• [COM 4						R	eady			🗆 əl	
												O Chie Celester
	0.1		11 - L		1	Ы	D		off v			Chip Selector
		oad		Merge			Frogran	n	<u>√: v</u> enty	G LALIN	2	16F877 💌
	èn n.	(mark)				17 L				- 1 Free		Concert 1

- 9) Μεταφέρουμε το chip στην εκπαιδευτική πινακίδα SE1001 και την τροφοδοτούμε με τάση 9-12 Volts.
- 10) Συνδέουμε το σύνδεσμο DB9 της εκπαιδευτικής πινακίδας SE1001 σε μία θύρα USB του υπολογιστή με το καλώδιο μετατροπέα USB to Serial. Αν χρειαστεί περιμένουμε λίγα λεπτά ώστε να ανιχνευθεί από το λειτουργικό σύστημα και από τη διαδρομή Η/Υ μου/Ιδιότητες Συστήματος/Διαχείριση Συσκευών/Θύρες Com & LPTεντοπίζουμε σε ποια θύρα COM φαίνεται πλέον ο μετατροπέα USB to Serial και επομένως και η εκπαιδευτική πινακίδα SE1001.

- 11) Φορτώνουμε το πρόγραμμα HyperTerminal Windows ή κάποιο αντίστοιχο. Εμείς φορτώνουμε την εφαρμογή USART Terminal στο περιβάλλον της mikroc (στο προγραμματιστικό περιβάλλον της mikroC (μενού Tools / USART Terminal) και ορίζουμε τις ρυθμίσεις της σειριακής επικοινωνίας (Com10, 9600 bps, 8 bit, no parity) και στη συνέχεια πατάμε το πλήκτρο Connect.
- 12) Επιλέγουμε DATA FORMAT σε κώδικα ASCII και από στο πεδίο SEND γράφουμε το χαρακτήρα 'm' και 'a' είτε μεμονωμένα είτε μαζί και πατάμε το πλήκτρο SEND. Στο παράθυρο RECEIVE Βλέπουμε τους ASCII χαρακτήρες με τους οποίους ο PIC απαντάει με το μήνυμα 'HELLO WORLD'.
- 13) Επιλέγουμε DATA FORMAT σε κώδικα DECIMAL και από στο πεδίο SEND γράφουμε το χαρακτήρα 'c'. Τότε βλέπουμε τον αριθμό των ψηφιακών επιπέδων(0-255) στα οποία αντιστοιχεί η αναλογική τάση που συνδέεται μέσω του ποτενσιόμετρου στον ακροδέκτη AN3 του PIC. Μεταβάλλουμε ποτενσιόμετρου σε διάφορες θέσεις και πατώντας διαδοχικά το πλήκτρο SEND βλέπουμε τις διάφορες ψηφιακές ενδείξεις που στέλνει ο PIC σε δεκαδική τιμή.

COM Port Se	tings		Send					
Com Port:	COM10		ma				Send	Repeat sending
aud rate:	9600 bps							Repeat sending every
Stop Bits:	One Stop Bit		V Supp	oort ASCII 🗏 Append	d New Line	65 🚔	Send ASCII	1000 miliseconds
arity:	None		- Send	as typing	-Cond from file			
	Check Parit	v			Send from the	•		Start Sending
ata bits:	Eight		Clear	- 📃 Add Time				Start Schang
Buffer size:	1024		- ma099 09	9 099 099 099 099	099 099 099 0	99 099 0	0 990 990 990	99 ma
low control:	None		T					
	L.							
oata Format	New Line Set	tings——						
ASCII	CR+LF (0)	x0D + 0x						
HEX	C LF (0x0A)							
	CR (0x0D)						
JUN								
Comm <u>a</u> nds=			Receive=					
Conne	ct Disc	connect			Log to file			
Auto Co	nnect							Start Logging
			Clear	Add Time	Append to	end of fil	e	
lessages			HELLOWOF	LD086 123 152 152	152 152 068 0	68 205 2	55 032 029 0	00 000 039 HELLOWORLD
Clear								
Connected to	COM10							
connected t	CONTO							
			-					
ins								
Connected F	U RxD	TxD						
0		0						
		-						
RTS C	TS DTR	DCD DS	R					

14) Τέλος πατάμε Disconnect. Αφαιρούμε πρώτα την τροφοδοσία της εκπαιδευτικής πινακίδας SE1001 και μετά αποσυνδέουμε το μετατροπέα USB to Serial για να αποφύγουμε τυχόν βραχυκυκλώματα.

Ονοματεπώνυμο : Ημερομηνία:

<u>Βιβλιογραφία :</u>

- « Εισαγωγή στον προγραμματισμό μικροελεγκτών, FPGA και CPLD: Επιλεγμένες Εφαρμογές» Σ. Μπουλταδάκης, Γ. Πατουλίδης και Ν. Ασημόπουλος, Εκδόσεις ΤΖΙΟΛΑ, Θεσσαλονίκη 2011, ISBN: 978-960-418-291-6
- 2) «Υλικό και Λογισμικό Μετρήσεων: Παραδείγματα και Εφαρμογές»
 - Σ. Μπουλταδάκης και Ι. Καλόμοιρος, Εκδόσεις ΤΖΙΟΛΑ, Θεσσαλονίκη 2009, ISBN: 978-960-418-161-2

TEXNIKES ERADSEIS TZIOAA